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Abstract

Decline Curve Analysis is a popular tool in the oil and gas industry for forecasting
well production and estimating reserves. Current decline models fail to capture
all of the behavior in shale gas production histories, due to the complex flow
regimes of these low-permeability reservoirs. That is, upon fitting one of these
models, one often sees significant and sustained deviation of the flow rate data
points from the decline trend. One way to measure this “lost signal” is to look at
the autocorrelation in the residuals about the fitted decline model. Indeed, with
many shale gas wells we see significant amounts of autocorrelation, especially
when comparing the flow rate at one time to the next (lag one). Theoretically,
this serially autocorrelated error can impact<decline curve analysis in two ways:
1) inefficient estimationof decline curve parameters, and 2) lost signal in the data.
Borrowing from time series statistics, there are two conventional ways of dealing
with these potential problems: 1) estimate the decline curve parameters with
generalized least squares or generalized nonlinear least squares, and 2) fitting an
ARMA model (or variants) to the residuals and adding it to the fitted decline
curve.

This paper investigates the practical implications of these two procedures by
exercising them over decline curves fit to 8,527 Marcellus shale gas wells (all wells
from that play with viable data for the analysis). The study explores the effect
that generalized regression methods and ARMA-modeled residuals have on six
different decline curves, and performance is measured in terms of sum of squared
residuals (a metric for goodness-of-fit, calculated on the training data), mean
absolute percent error (a standard metric for forecasting accuracy, calculated on
the testing data), and prediction interval coverage rate (to examine the efficiency
of probabilistic forecasts, also calculated on the testing data). These metrics are
computed on the first 24, 36 and 60 months of training data at each well, with
the testing data comprised of the remaining production rates.

The main finding of this study is that the prediction intervals nearly always
show better coverage of the testing data with inclusion of the ARMA-modeled
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residuals, regardless of the type of decline curve used or length of production data
used for fitting. Similarly, the uncertainty about EUR values is better quantified
when using the ARMA-modeled residuals. Including ARMA-modeled residu-
als also frequently improves forecasting accuracy, especially for Duong’s decline
curve and for other curves when more data are used for fitting, and consistently
improves the goodness-of-fit. The use of generalized least squares or general-
ized nonlinear least squares has little benefit in fitting the decline curves, except
for the Logistic Growth model, where it improves both fit and forecasting ac-
curacy. Overall, one can expect more accurate production forecastswith better
uncertainty quantification when accounting for serial autocorrelation in the pro-
duction data, which is needed for the optimal development of both conventional
and unconventional resources.

Keywords: prediction intervals, generalized least squares, ARMA, forecasting
methods, production optimization, shale gas

1. Introduction

Decline curve analysis (DCA) serves as a popular method for determining
EUR and forecasting production. /By only requiring historical production rate
data, DCA has an advantage over other methods, such as reservoir simulation
(Erdle et al., 2016), which requires data for reservoir and fluid properties. For
this reason, DCA is«commonly used for reporting reserves to the U.S. Securities
and Exchange Commission for assets under production and managing petroleum
resources (SPE, 2018). Thus, DCA offers an accurate and low-cost (in terms of
data and computational requirements) method for modeling and forecasting oil
and gas production, from both conventional and unconventional reservoirs. As
examples of unconventional applications, Weijermars| (2014)) uses Arps’ Hyper-
bolic decline curve to forecast U.S. shale gas production under different scenarios,
and Yuan et al. (2015) feature DCA prominently in their review of economic eval-
uation techniques for shale gas development.

The initial decline curves were designed for conventional reservoirs by |Arps
(1945) in two forms: 1) the Exponential model,

gt = gi exp(—Djt), (1)
and 2) the Hyperbolic/Harmonic model,

@ = q;(1+ Dbt)~°, (2)
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where 0 < b < 1 is hyperbolic and b = 1 is harmonic. Many unconventional wells
show b > 1. Some modern advances are designed for shale gas production, such
as the Power Law Loss-ratio model (Ilk et al., 2008),

@t = qi exp(—Doot — Djt"), (3)
the Stretched Exponential (Valko and Lee, 2010),
at = giexp(—(t/7)"), (4)

the Logistic Growth model (Clark et al., 2011)),
@ = Knt""/(a +1")?, (5)
and Duong’s model (Duong}, 2011)),

a (tlfm_l)

g = qit "eTm + goo- (6)

In all of the above equations, our independent variable is time ¢ =1,2,...,7T and
our dependent variable is flow rate ¢;. As you can see, these. models have different
coefficients, although some share common enes (e.g., initial flow rate ¢;). More
recent studies focus on developing new decline curves that capture the complex
flow regimes of unconventional, tight reservoirs (e.g., |Wang et al.| (2017)), but
little attention has been paid to how theése models are fit to the data. That is,
the technological advances of these new models could be undermined by poorly-
determined values of their parameters.

Furthermore, the value of forecasts from any model is difficult to determine
without some measure of ‘confidence in those predictions. Confidence intervals
about the model predictions, or ”prediction intervals”, estimate a range that
the forecasts will fall into with some arbitrary probability. For example, in oil
and gas, one is often interested in estimating P90 and P10, which are the 10th-
and 90th-percentiles of predicted rates, and so define an 80% prediction interval.
Accurate determination of P90 and P10 is important for risk management asso-
ciated with the economic appraisal of a field (Weijermars et al., [2017). |Cheng
et al. (2010) point out that conventional bootstrap methods tend to underesti-
mate uncertainty in DCA, and also suffer from assuming that the production
rate data are independently and identically distributed (i.e., not autocorrelated).
Gong et al. (2014)) and |de Holanda et al.| (2018]) illustrate the careful calibration
of prior distributions (for the decline curve parameters) that is needed to make
Bayesian probabilistic DCA successful. Both studies fit prior distributions to his-
tograms of decline curve parameter values that are calculated beforehand using
deterministic methods. Without calibration to historical data, these priors are
arbitrarily and subjectively determined by the user. With the resulting predic-

tion intervals depending strongly on these priors, the user can ultimately exert
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great influence (either knowingly or unknowingly) on the estimation of uncer-
tainty. Furthermore, such calibration may not be possible at fields with limited
data, and borrowing the calibration performed at a data-rich field may not be
appropriate. Thus, there is a need for probabilistic DCA methods that establish
accurate prediction intervals without subjective inputs or data-intensive calibra-
tion.

Despite the inherently temporal nature of production histories, there exists
little published work that applies time series statistics to modeling and forecast-
ing of well production rates. |Ayeni and Pilat| (1992)) apply time series. statistics
(ARIMA modeling) to 12 oil wells. Using monthly production data, the ARIMA
models out-perform Arps’ Exponential and Hyperbolic modelsybut this compar-
ison is based on fits to large samples of at least 50 months. Similarly; |Olominu
and Sulaimon (2014)) find that a particular ARIMA model does better than Arps’
Exponential model when tested on one cumulative oil production curve, but the
performance is based on goodness-of-fit (to all available data) and not forecasting
accuracy. |Gupta et al.| (2014) perform ARIMA modeling on 30 unconventional
wells from the Barnett, Bakken, and Eagle Ford, and find that it performs sim-
ilarly to the Duong (1989)) decline curve model, but it is'not clear what this
performance is based on and how much data is.used to fit the models. Addition-
ally, a couple studies have applied time series statistics (ARIMA modeling) to
national crude oil production (Ediger et al., 2006, Yusof et al.| (2010)). Cheng
et al.| (2010) examine the autocorrelation of residuals (after fitting Arps’ hyper-
bolic model), but onlyin order to determine the appropriate block size for a block
bootstrapping approach to probabilistic forecasting. No discussion is given to the
effect of autocorrelated error on the estimation of the decline curve parameters,
and no attempt is madeto model this autocorrelation structure in the residuals.
Machine learning offers another source of improvement beyond decline curves.
There has been some work exploring the application of nonlinear autoregressive
neural networks with exogenous inputs (NARX networks) to production data
(e.g., Sheremetov et al. (2014)). In another example, Frausto-Solis et al.| (2015)
forecast 0il production with a “Simulated Annealing based on Machine learning”
approach.

The previous literature above largely focuses on conventional oil wells, and
when unconventional production data are used (as in |Gupta et al. (2014)), ap-
propriate, modern decline curves are not applied (e.g., Power Law Loss-ratio,
Stretched Exponential, Logistic Growth, and Duong’s model). Unconventional
wells exhibit much more complex production behavior than conventional wells,
and a purely data-driven approach, such as ARIMA modeling alone, may not be
able to capture such behavior, especially with limited production data, which is
inherently non-stationary and heteroscedastic. These modern decline curves are
designed to accommodate the salient trends and patterns seen in unconventional
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production data in their functional forms, and can project such trends into the
future with limited historical data (although, such forecasts are expected to be-
come more reliable with more historical data). These observations motivate a
hybrid approach where the decline curve models the general trend of production
decline and time series modeling of the residuals about this decline curve capture
deviations away from the bulk trend, as expressed through autocorrelation.

Autocorrelation, p(h), refers to the degree which an observation at time, x,
depends on any previous observations, x;_p, where h is called the “lag”.  Auto-
correlation can be estimated from a sample by

. 7(h)
p(h) = 4(0)’ (7)
where y(h) is the autocovariance at lag h. It is estimated by
n—h
A(h) =n"" Z(xt+h —Z)(xp— T), (8)
t=1

where Z is the sample mean of x. Much of the dependency of production rates
on time is described by any one of the decline curves above. However, this paper
shows that significant autocorrelation can exist.in the residuals after fitting a
decline curve. This finding is important for two main reasons: 1) estimators of
decline curve parameters that do not consider this autocorrelated error are inef-
ficient; and 2) this autocorrelation in the residuals can be modeled and added to
the decline curve fit, leading to a better performing model of production decline.
To elaborate on the first reason, consider the linear regression equation (pre-
sented here in terms of linearizing Arps’ Exponential model by log-transformation):

In(q) = B't + ;. 9)

An implicit assumption in fitting this equation (by least squares or maximum

likelihood) is that the error at each time, e, is independently and identically

distributed (i.i.d.); which leads to the ordinary least squares (OLS) estimator for
the coefficients 3 being

B = (#'t)""¢'In(q). (10)

This assumption is broken when the residuals display autocorrelation, which im-
plies dependency between times. While this doesn’t theoretically introduce any
bias in the estimation of the coefficients, it does make their estimation inefficient,
which means that the variance of the estimated value is not minimal (Cochrane
and Orcutt, 1949). One can mitigate this inefficiency through “generalized least
squares” regression, in which the correlation structure of the error is specified.
The OLS estimator above then becomes

3= (t's7) 'S n(q). (11)
)



This is the generalised least squares (GLS) estimator of the linear regression
coefficients, in which the covariance matrix ¥ contains the serial autocorrelation
in the off-diagonal elements (the diagonal elements contain the variance of e;). If
Y is unknown (which it usually is), one can estimate it by exercising Eq. [§ on
the residuals from the OLS regression.

This same premise holds true for non-linear regression with nonlinear least
squares (NLS) (Gallant et al., |1976)), which is used in fitting all decline models
presented above, except Arps’ Exponential model. With nonlinear regression, let
f(t;0) represent any decline curve with vector of parameters 6. One. finds the
optimal parameter values by minimizing

T
SSRyps(0) =Y (f(50) —a)* = e (12)

t=1 t=1

The generalized nonlinear least squares estimates of f factor in the correlation
between error terms at different times and can be found by minimizing

SSRanLs(0) = [a—£(0)]'S7Hq — £(9)]. (13)

Minimization in either case can take place using any one of a variety of iterative,
optimization algorithms (Gauss-Newton, Levenberg-Marquardt, etc.).

Generalized (nonlinear) least squares only pertains to the estimation of the
regression coefficients. Even after estimating the coefficients in this manner, the
residuals may still contain autocorrelation:” Such structure can be modeled and
incorporated in the decline curve, say in an additive way. Suppose we generically
define the decline curve asf(¢; 6), where 0 is the vector of decline curve parameters
we wish to estimate, then our regression equation is

n(gt) = In(f(t;0)) + e (14)

If we know that e; is at least partially composed of an autocorrelated signal, we
can capture that signal with an autoregressive model of order p (AR(p)):

et = p1ei-1 + P2ep_9 + ... + Pper_p + wy, (15)

where now w; is i.i.d. Gaussian white noise with zero mean. Alternatively, the
moving average model of order ¢ (MA(q)), treats the signal as a linear combina-
tion of white noise terms:

e = wy +O0Lwi_q + Oowi_o+ ...+ qut—q' (16)
The mixed autoregressive moving average (ARMA) model is then:

er = Pprer—1+ gaero+ ...+ Pper—p + w + w1 + bowi_o + ...+ Ogwi_g, (17)
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where ¢, # 0 and 6, # 0, and the time series e; is stationary (Shumway and
Stoffer, |2010)).

While these theoretical points should be taken into consideration when fitting
decline curves to production data, whether they afford any practical benefit re-
mains to be tested. This is the primary goal of this paper: to perform a thorough,
comparative, quantitative analysis between the traditional regression procedure
for decline curves (OLS or NLS) and 1) regression via generalized (nonlinear)
least squares (GLS or GNLS), 2) additive inclusion of an ARMA model with the
decline curve, and 3) the combination of GLS/GNLS with ARMA-modeled resid-
uals. In so doing, the Methodology section presents a method of fitting decline
curves and estimating prediction intervals in a manner that is free of subjectivity
and a priori calibration.

Another goal of this paper is to demonstrate the proposed improvements to
DCA on a BIG dataset. Doing so gives a more convincing validation of the
research than on a small dataset, which may appear to be preferentially selected
to give a favorable validation, or at least lack statistical power and generality.
Working with BIG data also increases the potential for ebserving patterns that
may not be apparent in smaller datasets, such as trends in behavior across a play,
and exploring the limitations of the methodology at hand. To this end, I use all
viable gas production histories from-the.Marcellus shale, which totals 610,192
monthly rate observations from 8,527 wells.

2. Methodology

The goal of this paper is torinvestigate the effect that the inclusion of autore-
gressive and/or moving average terms may have on decline curve performance,
not only in terms of decline curve parameter estimation via generalized least
squares (GLS) or generalized nonlinear least squares (GNLS), but also in terms
of ARMA modeling of the residuals. The overall methodology to make these
comparisons is as follows:

1. Fit decline curve by OLS (Arps’ exponential) or NLS (hyperbolic, logistic
growth, power law loss ratio, stretched exponential, and Duong’s model) to
training data, girqin

2. Caleulate residuals, eyrgin = In(@rain) — In(Gtrain), Where Girain are the
predictions from the fitted decline curve

3. Tteratively fit ARMA models of varying order to the residuals to get optimal
orders, p and q

4. Re-fit decline curve by GLS (exponential model) or GNLS (all other models)
with ARMA(p,q) correlation structure

5. Repeat step 3 on residuals from GLS/GNLS fit
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Thus, there are four distinct outputs whose performance needs to be eval-
uated: 1) the base model from step 1, 2) the base model combined with the
ARMA-modeled residuals from step 3, 3) the GLS/GNLS fit model, and 4) the
GLS/GNLS fit model with the ARMA-modeled residuals from step 5. To eval-
uate performance, all regressions in this paper are performed on the first Tirqin
months of data from each well for the training data, and the fitted decline model
forecasts are compared to the remainder of the record (Tiyqin +1,...,7T) at each
well. In practice, one would use all available data for fitting.

To elaborate more on these steps, in the first step, Arps’ exponential model
can be fit with OLS after taking the natural log transform of Eq. However,
all other decline curve models considered in this paper cannot.be linearized and
required NLS in order to estimate the decline parameters. (While Duong’s model
is conventionally fit with a stepwise OLS procedure, where OLS is used on a
reduced form of the model to get a and m and‘then used again once these two
parameters are known to get ¢; and ¢ (Duong, 2011), I show in this paper that
using NLS on Eq. @above gives a better fit to thedata.). Nevertheless, performing
nonlinear regression on the log-transformed decline models with log-transformed
production rate data gives better performance from the NLS algorithm (versus
not using log transformations). Here, the Levenberg-Marquardt fitting algorithm
gives relatively robust results, conditional on the convergence tolerance (~1.5e-
8) and maximum number of iterations allowed (1000). This fitting procedure is
implemented by the nlsLM function in'R (R Core Team, [2017).

Starting values for the NLS decline curve fits are either chosen as typical
values from literature, estimated from the data, or determined pragmatically
through trial and error. The Exponential model does not require starting values
because it is linear. The Hyperbolic/Harmonic model uses starting values for ¢;
as the first production rate in the data series (¢;=1), b = 0.5, and

Di — _ln(qQ) B ln(QI) (18)
la —t1
The Power Law Loss-ratio model uses the same ¢; and D; starting values as
above, and initial Dy, = le — 6 and n = 0.15. The Stretched Exponential also
uses the first data point for the starting value of ¢; and n = 0.15, but with
7 = 2. The Logistic Growth models uses the average parameter values reported
in Clark et al. (2011): K = 1.78e6, a = 33, and n = 0.9. The starting values
for Duong’s model are a = 0.25, m = 1.5, and g, = 0, with the same ¢; as the
previous models. Furthermore, all parameters are constrained to be non-negative
in the NLS fitting algorithm. The GNLS algorithm is given the NLS-estimated
parameter values as starting points.
In steps 3 and 5 above, the orders p and ¢ of the ARMA models are determined
by iteratively fitting models of varying order and taking the one with the best
8



Akaike information criterion (AIC):
AIC = 2d — 21In(L), (19)

where d is the number of parameters in the model and L is the maximum of the
likelihood function for the model. AIC quantifies the goodness-of-fit of the model
to the data in the likelihood function, but also adds a penalty for the number of
parameters in order to prevent overfitting. Thus, in steps 3 and 5, we seek to
find

[ﬁ, Q] =arg minp,qe[o,l,...ﬁ]Alc(ln[f(t; 0)] + prep_1+ poer_o+ ...+ qbpet_p—l—
Orwi—1 + Oowi_o + ...+ qut_q).
(20)
This optimization is performed with the auto.arima function in R (R Core Team,
2017)).

2.1. Prediction Intervals.

Prediction intervals are determined via a bootstrap approach that starts by
drawing 1000 random samples of decline curve parameters based on their mean
and standard errors returned from the NLS or GNLS fits. The parameter stan-
dard errors are determined as the residual standard error times the square root
of the Hessian matrix of the model’s logdikelihood function, which is estimated
numerically (Ritz and Streibig), |2008, p.13). In the bootstrapping, all parameters
are treated as independent and log-normally distributed (to prevent negative val-
ues and, thus, unrealistic decline curves). The decline model then predicts 1000
forecasts over the testing time period-using these 1000 sets of parameter values
in turn. The standard error at each forecasting time is computed as the square
root of the sample variance of the 1000 log-transformed predictions (§¢) at that
time divided by the square root of the number of training samples:

Var(lnqy)

SE; = 21
! Ttrain ( )
The prediciton intervals are then constructed in log space as
Qtay2,ar Q Qt1—a/2,4
131157 = lnq} SEt, SE (22)
“ [ QNa/Z QNl a/2 }

where « is the significance level (in this paper, we use a = 0.2 in order to give
an 80% prediction interval, whose limits correspond to P90 and P10), ¢; is the
prediction at time ¢ given by the mean decline curve parameter values, Qt is the
quantile from a t¢-distribution with degrees of freedom df = Tyrqin — d (with d

being the number of model parameters), and QN is the quantile from a standard
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Normal distribution. Note that because the GNLS approach estimates decline
curve parameters with greater efficiency, and thus smaller standard error, one
would expect the prediction intervals to be narrower than those from the NLS-fit
models.

The above construction works for the NLS- and GNLS-fit decline curves; to
get prediction intervals for their counterparts that include the ARMA-modeled
residuals, we use the same equation above for PI; ., but the prediction standard

error is instead
Var(lng Var(é
SE, — \/ ar(lngg) + ar(et)’ (23)
Ttram

with Var(é¢) being the variance of the predicted residuals from the ARMA model.
This prediction variance is given via Kalman filter forecasting as described in Har-
vey and McKenzi¢| (1982) and implemented in the R function predict. Arima (R
Core Team, [2017). One can see that the prediction standard error that includes
the ARMA model (Eq. will always be at least as large as that for the base
decline curve model (Eq. . That is, by capturing the behavior of past decline
curve model residuals, the prediction intervals will tend to be wider, and thus
more conservative.

3. Data

The West Virginia Geologic and-Economic Survey and DrillingInfo supply
monthly production histories, along with various metadata, for wells in the Mar-
cellus formation. AOut of an' initial population of 15,990 wells, only 8,527 have
suitable data for decline curve analysis.  This subset was determined after filtering
and cleaning the production histories to remove data before the stated comple-
tion dates, removing probable partial observations (months where not all days
exhibited production), removing zeros, and keeping only a continuous record of
gas rates until the first (if any) gap in the record. Furthermore, after all these
pre-processing steps, only records with more than 24 months of data were re-
tained, in order to have a sufficient number of data points for robust curve fitting
and to retain some testing data for assessing forecasting accuracy.

4. Results and Discussion

4.1. Example with Duong’s Model.

We start with a detailed illustration focusing on Duong’s model exercised
over all available Marcellus shale gas wells. First, a comparison is made between
two methods of fitting Duong’s decline curve model: the prescribed step-wise
ordinary least squares (OLS) procedure (as outlined in Duong (2011)) and a non-

linear least squares (NLS) procedure (this initial analysis is unique to Duong’s
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model). Fig. [I| compares the sum of squared residuals (SSR) from these two
approaches, as fit to the 8,527 Marcellus records. For any one record, the better
fitting model will give the smaller SSR, defined in Eq. The NLS approach
generally gives lower SSR than the OLS approach, with some exceptions (the
vast majority of points fall below the 1:1 line in Fig. . This indicates that NLS
fits Duong’s decline model to the data better than the standard OLS approach.

le+13-

SSR (NLS)

1e+04 1e+07 1e+10 1etl
SSR(OLS)

Figure 1: Sum of squared residuals from the non-linear least squares fitting approach versus
sum of squared residuals from the traditional step-wise OLS approach. The diagonal line is the
1:1 (z = y) line.

Furthermore, because it fits the data-better, the NLS fitting method yields
less serial autocorrelation in the residuals, e. The Durbin-Watson test statistic
serves as a metric for the significance of sample autocorrelation values (in this
case, we only look at lag-1 autocorrelation, or the correlation between consecutive
observations in time):

Dy = Ziza(e ). (24)
EtT=1 e}

The value for DW is between 0 and 4, with smaller values indicating increasing
positive autocorrelation and larger values indicating increasing negative autocor-
relation (DW .= 2 indicates no autocorrelation). Fig. [2| shows that the NLS
fitting approach generally gives larger DW values than the OLS approach, again
with some exceptions (majority of points fall above the 1:1 line, with few be-
low). Thus, the bias introduced through the comparatively poor fits of the OLS
approach gives greater positive autocorrelation in the residuals.

Although the NLS fitting approach reduces the magnitude of serial autocorre-
lation in the decline curve residuals, there is still considerable autocorrelation in
a significant proportion of the well production histories. In Fig. [2| 2,946 points
fall below DW = 1, which is generally accepted as critically low, for the NLS
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DW (OLS)

Figure 2: Durbin-Watson test statistics for the lag-1 autocorrelation value from the non-linear
least squares fitting approach versus the traditional step-wise OLS approach. The diagonal line
is the 1:1 (z = y) line.

approach (or approximately 35% of the 8;527 wells).

With the NLS regression established as the superior fitting procedure in the
baseline case (over OLS; again, this is strictly for Duong’s model), we can proceed
to investigate the improvements afforded by GNLS regression and ARMA mod-
eling of the residuals. For the rest of the analysis, the first Ti.q;n = 24 months of
every well production history is used for model fitting, while the remainder of the
record is reservedfor validation (calculation of mean absolute percent error and
coverage rate below). The next step is-to fit an ARMA model to the calculated
residuals from the NLS regression of Duong’s model. Fig. (subplot labeled
“Duo”) shows the distributions of autoregressive order p and moving average
order ¢ from fitting ARMA models to the Duong model residuals. While the
case of p =0 and ¢ = 0 is predominant, there are cumulatively more cases with
p > 0 and/or ¢ > 1. That is, more often than not, significant autocorrelation
is observed and an ARMA component is warranted for inclusion with Duong’s
model.

GNLS regression of Duong’s model is run on all production records with
any non-zero p or g value (if both p = 0 and ¢ = 0, then there is no serial
autocorrelation structure to specify and GNLS regression reduces to a weighted
least squares regression). Separately, the fitted ARMA model from the OLS/NLS
residuals is added to the OLS/NLS decline curve fit (as in Eq. [14{17). Fig.
shows an example of these different fitting procedures for Duong’s decline curve
model, where those methods incorporating ARMA-modeled residuals not only fit
the training data better (< 24 months), but also give more reliable prediction

intervals after 24 months. The most important improvement here is the increase
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Figure 3: Plots showing distribution of AR and MA orders (p and ¢, respectively) for each
decline curve model. The numbers in each plot.indicate the number of wells with the associated
combination of p and<g values.

in CR afforded by the ARMA modeling, where the prediction intervals without
ARMA fail to capture nearly all future data points. The ARMA modeling, by
increasing the standard error, widens the prediction intervals considerably to
capture more data points. The forecast accuracy remains about the same (MAPE
~ 79%), where the slightly smaller value for the ARMA cases is driven by a short-
term effect of the AR and MA components immediately after 24 months. This
effect wears off, and the average prediction rebounds back to the same value as
those cases without ARMA, in the long term. This particular case was chosen
as it is one of the longer time series in the dataset (134 months), and gives a
representative portrayal of what one would expect to see when estimating EUR
with these various fitting approaches: no significant difference. Again, the real
improvement comes when assessing uncertainty about the average EUR estimate,
as the prediction intervals with the ARMA method scale with the error in the
training data. Furthermore, in this example, the use of GNLS in fitting the
models makes no impact on the goodness of fit, forecasting accuracy, or prediction
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intervals.

NLS NLS w/ ARMA

10000- SSR = 4815658

MAPE = 79.4%
CR =0.009

SSR = 2383874
MAPE = 79.2%
CR =0.636

oL SNeswIARVA
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MAPE = 79.4% MAPE = 79.2%
CR =0.009 CR =0.636

100-

0 50 100 0 50 100
t (Months)

Figure 4: An example from well APT 47-045-01807. The vertical dashed line is at ¢ = 24 months,
representing the cut-off between training and testing data points. The solid black curve is the
estimated decline curve for each fitting procedure, and the shaded region around the curve after
24 months is the 80% prediction interval. Production data are provided by DrillingInfo.

The affect of these two modeling treatments (GNLS and ARMA) is measured
by three performance metrics: 1) SSR, which indicates the goodness-of-fit to the
training data (first 24 months), 2) mean absolute percent error (MAPE), which
assesses the predictive accuracy of the model forecasts on the reserved testing
data (after 24 months), and 3) coverage rate (CR) of the forecast prediction
intervals, which counts the proportion of testing data falling within a model’s
prediction interval. SSR is defined in Eq. but now the summation only goes
to Tirain instead of T. MAPE is calculated on the testing data as

T ~
1 _
MAPE= ———— Y 100% | &% (25)
T — Tirain Ty 1 qt

The coverage rate uses the prediction intervals at the o = 0.2 significance level
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as defined in the Prediction Intervals subsection above, and is calculated as the
proportion of testing data points lying in the prediction interval. Ideally, CR =
0.8; that is, we expect 80% of the data to fall in between P90 and P10. In order
to more easily compare favorable and unfavorable coverage rates (especially in
the paired t-tests below), an adjusted CR metric

|CR —0.8]

CRuq; = 08 (26)
transforms CR such that good coverage rates (closer to 0.8) have low CRyg; values
and poor coverage rate (far from 0.8) have high CRaq; values, on the [0, 1] scale.

Fig. shows the SSR, MAPE, and CR,q; values for all the wells fit with
Duong’s model plotted by whether they incorporate ARMA-medeled residuals or
not (“NLS w/ ARMA” versus “NLS w/o ARMA”), by whether they use GNLS
or not (“GNLS” versus “NLS”), and the combined effect of GNLS and ARMA.
In this plot, the salient points made from Fig. {] are generally true when looking
at all wells in the dataset, although to vary degrees and with many exceptions.
Here we see that including the ARMA-model generally gives a better fit (lower
SSR), a better forecast (lower MAPE), and a better coverage rate (lower CRagj),
whereas the use of GNLS alone makes little apparent difference, except in the
case of CR,g4j where it can either improve or enhance the coverage rate, sometimes
drastically so (many points dispersed away from the 1:1 line in Fig. ) The
ARMA component largely drives thedmprovements in SSR and MAPE, where
the patterns seen in the c.) and f.) subplots mimic the patterns in a.) and d.).
Moreover, the improvement in MAPE that inclusion of the ARMA model affords
appears to be primarily for NLS fits-with relatively smaller prediction error to
begin with (M APE g 1000%), as seen in Fig. . Only several points diverge
significantly below the 1:1 line at higher MAPE values because those cases have
production behavior that is too erratic after 24 months. Furthermore, in terms of
coverage ratey the inclusion of the ARMA component can degrade performance
if the NLS w/0 ARMA model already has a good coverage rate close to 80% (see
cluster of points abeve the 1:1 line at CR,q < 0.25 in Fig. ) This tends to
occur when the widening of the prediction interval (afforded by the addition of
ARMA prediction standard error) leads to more than 80% of the testing points
falling within the interval. Note that above C'Rqq; > 0.25, there is little risk of
the ARMA modeling to detrimentally effect the coverage rate performance (few
points lie above the 1:1 line in this domain).

Paired t-tests assess the statistical significance of these patterns. Since each
well gives performance metric values in all categories (w/ ARMA, w/o ARMA,
GNLS, NLS), pairing by well and taking the difference of metric values at this
level gives a more powerful hypothesis test. Furthermore, since we want to test
whether the model fitting procedures are making an improvement, one-sided tests
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Figure 5: Plots showing performance metrics (SSR, MAPE, and CRag;) from all wells fit with
Duong’s model and with p > 0 or ¢ > 0. The performance metrics are plotted by the pro-
posed fitting improvements (with ARMA, using GNLS, and the combination of the two for the
regression) against the baseline case (no ARMA modeling of residuals and using NLS for the
regression). The grey line in each plot is the 1:1 (z = y) line.

are appropriate. Specifically, with our null hypotheses being that there is no
change in MAPE, SSR, or CRaq;j with the inclusion of ARMA-modeled residuals,
with using GNLS, or with the combination of ARMA and GNLS, our alternative
hypotheses are that MAPE, SSR, and CRaq; are lower with these fitting meth-
ods than without ARMA and without GNLS. All tests are conducted at a 95%
confidence level.
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Table [1] presents the estimates of the mean of differences and their associated
p-values from these tests. These values for Duong’s model (“Duo” column) agree
with the patterns seen in Fig. SSR improves with all treatments (GNLS,
with ARMA, and GNLS with ARMA), but the greatest improvement in this
goodness of fit is with the inclusion of the ARMA component (reduces SSR by
2.8¢9 (Mscf/month)? on average). Similarly, the ARMA component makes the
greatest reduction in MAPE on average: 51 percentage points (which is statisti-
cally significant). Fitting with GNLS tends to increase MAPE by 10 percentage
points on average, and combining GNLS with ARMA gives moderate reduction
of 19 percentage points (that is not statistically significant). Coverage rate is also
most improved by the added ARMA model, but not to the extent that Fig. [bg
suggests; ARMA only pushes the coverage 0.02 closer to the 0.8 expected value
on average (however, this value is highly significant). Aswe see in Fig. , there
is certainly much greater potential for larger improvements (almost all the way
up to 1.00), but these are counteracted by a large.density of points on or very
near to the 1:1 line and also the aforementioned points above the 1:1 line (for
CRaqj < 0.25, especially).

4.2. Extension to Other Decline Curves.

The same comparative procedure-made on Duong’s decline curve model above
is applied to five other decline curves: -Arps’ Exponential (Exp), Hyperbolic
(Hyp), Power Law Loss Ratio (Pow), Stretched Exponential (Str), and Logistic
Growth (Log). Again; the Exponential model uses OLS and GLS, whereas all
other models use the nonlinear variants. The same steps outlined in the Method-
ology are applied to all 8,527 Marcellus wells for all decline curves. The frequency
of orders p and ¢ of ARMA models for the six different decline curves are shown
in Fig. |3l Here, all other models show a similar distribution of p and ¢ to Duong’s
model, with zero-order values being the predominant category (except with Exp),
but with p>0 and/or ¢ > 0 cases cumulatively having a greater frequency.

Furthermore; the same one-sided paired t-tests as used for Duong’s model
abovedare run on the results from the other decline curves, and the results are
presented in Table[I} In support of Table[l] and in lieu of the sort of scatterplots in
Fig. [, Fig. [6]shows boxplots of the raw MAPE, SSR, and CR,g;j values, organized
by decline curve type and fitting procedure. However, the main conclusions
should be drawn from the t-tests (Table , because these boxplots do not pair
the data on a well-by-well basis, which can be misleading. For example, in the
Duo boxplots for CRagj, we see no difference in the median values (these are all
equal to 0.25 for all four boxplots), but the ARMA cases have lower third quartile
(75th-percentile) values, which help explain the improvements in coverage rate
for Duong’s model reported in the t-testing above.

In Table [1} we see that including ARMA-modeled residuals always improves
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Decline Models

Alternative Exp Hyp Pow Str Log Duo

S5R

NLS>GNLS -9.1e+10  -6.9e+06 1.8e+06  -1.8e+06 3.4e+10 5.7e+07
(9.7e-01) (9.5e-01) (93e-02) (9.3e-01) (&2e-11) (6.4e-03)

wio ARMA >w/ ARMA  3.0e+08  2.2e+09  2.8e+09 1.8e+09 2.5e+11 28e+09
(1.0e-24) (2.6e-11) (26e-09) (3.6e-50) (7.0e-32) (3.98-29)

NLS w/o ARMA = GNLS wf ARMA  2.8e+09 1.7e+09  2.0e+09 1.6e+09 3.9e+10 0 2.5e+08
(9.7e-90) (1.3e-58) (1.6e-43) (1.1e-52) (5.1e-13)) (2.8e-27)

MAPE

NLS > GNLS  1.7e+00 6.6e-02 -5.8e+10 6.18-03 1.6e-07 <1.0e-01
(4.2e-01) (1.3e-01) (8.4e01) (F1e-01) LfT1.7a02) (7.7e-01)

w/o ARMA > w/ ARMA  -2.7e+00 3.2e+00 -4.5e-04 7.5e-02 5.6a+D0 5.1e+01
(8.1e-01) (9.7e-02) (6.0e-01) N 4.42-00), (B8e02) (2.2e-02)

NLS w/o ARMA > GNLS w/ ARMA  1.6e+00 7.6e-01 -8.0e+10 -2.3e.02 7.6e-01 1.9e+01
(4.2e-01) (1.7e-01) (84e01) (52e0)) (9.1e-02) (5.6e-02)

CR_adj

NLS > GNLS 1.7e-01 4.1e-03 1.1e-03 1.8e-03 -3.2e-03 -1.9e-02
{0.0e+00) (1.18-02) 4 3.3e-01) (2.8e-01) (5.7e-01) (1.0e+00)

wio ARMA > w/ ARMA “1.9e-01 1.1e-01 6.8e-06 4.7e-02 1.1e-01 2.9e-02
(0:0e+00) VO.0e+00) (4.5e-01) (8.8e-231) (O0.0e+00) (2.6e-94)

MNLS w/o ARMA = GNIS w/ ARMAL 218a-07 1.1e-01 1.1e-03 5.1e-02 9.7e-02 1.2e-02
{ 0.0e+00)¢0.0e+00) (3.4e-01) (4.7e-53) (6.0e-321) (1.1e-06)

Table 1: Table of one-sided paired t-test results for SSR, MAPE, and CRaqj calculated over all
decline models and at all viable well records, for 24 months of training data. In each cell, the
number on top is the estimate of the mean of differences and the number in parenthesis is the
p-value. Positive mean values are in bold and statistically significant values (p-value < 0.05)
are italicized.

the fit to the training data (all models have positive estimates of mean of differ-
ences for SSR for the alternative hypothesis that “w/o ARMA > w/ ARMA”,
and these estimates are all statistically significant, some drastically so). Fitting
with GNLS only helps in the Pow, Log, and Duo cases, with only the latter two
being statistically significant; GNLS tends to worsen the goodness of fit for the
Exp, Hyp, and Str decline models. Furthermore, while the combination of GNLS
and ARMA also improves the fit for all decline models, it never does so to the
same or higher degree as ARMA alone.
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Figure 6: Box plots of SSR, MAPE, and CR.q; values for all viable Marcellus production histories
after fitting each decline curve model'under the various combinations of NLS versus GNLS and
with ARMA-modeled residuals and without. The y axes have been clipped from le4 to 1el2 for
SSR and from 0 to 100 for MAPE in order to exclude outliers and better visualize trends in the
interquartile regions of the boxplots.

All but the Exp and Hyp models gain benefits to their forecasting ability
(in terms of MAPE), with the only statistically significant instances being with
Duong’s model coupled with the ARMA model (as discussed above; note that
this has the greatest improvement over all cases) and the Logistic Growth model
when fit with GNLS (however only by 0.16 percentage points). Note that the
Logistic Growth model with ARMA case reduces MAPE by 5.6 percentage points
on average, but this is not statistically significant. While Duong’s model shows
the greatest improvement, the best overall case with respect to MAPE is the
Hyperbolic model with ARMA-modeled residuals, which has the lowest median
MAPE at 29.8% (Fig. @ I gauge the lowest MAPE by median here because
the distribution of MAPE is not normally distributed; the paired t-tests are still
valid however, because they only require the differences of MAPE values to be
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approximately normally distributed, which they are in this case).

The coverage rates generally improve significantly with use of the ARMA
model (both with NLS and GNLS fits), except for the Power Law Loss Ratio
model, which generates very poor prediction intervals at most wells (Fig. @ As
with Duong’s model, these tend to be fairly modest gains on average, with the
largest improvements occuring with the Exponential model (0.28 improvement
in the rate when using GNLS with ARMA). However, it should be noted that
Duong’s model has the least to gain with respect to coverage rate, since the values
for the NLS without ARMA case are already the lowest out of all deeline curve
models (Fig. [6); again, including ARMA on top of the NLS-fit Duong’s model
gives slightly better prediction intervals.

4.3. Extension to Longer Training Datasets.

The analysis above on all six candidate decline curves is extended to all wells
with Tjrai = 36 months of training data (7,573 wells) and, subsequently, all
wells with T},qin = 60 months of training data (4,879 wells). The purpose here
is not only to examine the effects of using more data, but more so to see how
the patterns observed with Tj.q;n = 24 months may change with the potential
inclusion of (more) data from boundary deminated flow conditions. The same
paired t-tests are conducted and presented in Tables [2 (36 months) and |3| (60
months). The 36-month results (Table [2)) have a similar pattern to that of 24
months (Table , except-the major difference is that with 36 months, the MAPE
consistently improves with the inclusion of the ARMA model across all six decline
curves. All mean wvalues are positive here, albeit only Duong’s model remains
statistically significant (this is also true for the GNLS with ARMA cases), with
62 percentage points improvement.

Also, the coverage rates generally improve across the board in the 36 month
results as compared to the 24 month counterparts; all decline curves show larger
mean values-for both ARMA and GNLS with ARMA, and also for some GNLS
cases. The largest improvements in the coverage of the prediction intervals come
with the Exponential, Hyperbolic, and Logistic Growth models when they include
the ARMA-modeled residuals and also with the “GNLS w/ ARMA” case; these
improvements . are all around a 0.2 improvement in the rate.

Looking at 60 months (Table [3|) in comparison to 36 months, the mean differ-
ences for MAPE in the “w/o ARMA > w/ARMA” row are smaller for all decline
curves even though all but the Exponential case are statistically significant. This
suggests that at 60 months, the use of ARMA-modeled residuals with the NLS
fits gives more consistency in making better predictions, at the sacrifice of mag-
nitude of improvement. While half of the mean differences for MAPE in the
“NLS > GNLS” row are now statistically significant, these improvements are not
important in practice (0.3, 0.048 and 0.79 percentage points improvement). Sim-
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Decline Models

Alternative Exp Hyp Pow Str Log Duo

S5R

NLS = GNLS  -1.6e+15 1.3e+07  8.6e+07 -1.6e+06 1.1e+11 2.2e+08
(8.5e-01) (4.9e-02) (1.7e01) (56e-01) (1.0e-11) (5.3e-02)

wio ARMA >w/ ARMA  4.3e+09  2.4e+09 3.2e+09 2.7e+09 4.2e+11 28e+09

{ 3.8e-88) (1.4e-57) (3.3e-34) (6.3e-22) (22e-34) (4.8e-11)

MLS w/o ARMA > GNLS w/ ARMA  4.5e+09  2.7e+09  2.6e+09  2.6e+09 1.7e+11 2.0e+08
( 1.5e-82) (8.8e-59) (7.6e-35) (1.4e-18) (3.2e-12)) (77e-19)

MAPE

NLS » GNLS  -3.0e+00 9.3e-02 1.0e+00 2.9e-03 1.7e+01 2.2e-01
(6.1e-01) (2.9e-01) (3.5e-01) (315e-01) AT1.6ed1) (7.8e-01)

w/o ARMA >w/ ARMA  1.6e+01  2.2e+01  3.3e+00), 2.6Ge#00  2.4e+01 6.2e+01
(1.5e-01) (8.8e-02) (9.4e-02) N 8.8e:02), (if1e01) (2.5e-02)

MLS wi/o ARMA > GNLS w/ ARMA  1.1e+01 2.7e+00 6.2e-01 2.2e+00 2.7e+01 5.7e+00
(2.8e-01) (1.1e01) (3.7e01) (1.3e01) (1.1e-01) (2.7e-02)

CR_adj

NLS = GNLS 1.7e-01 2.7e-02 3.3e-03 -4.9e-03 2.1e-02 2.3e-03
(0.0e+00) (3.9857) M 1.4e-01) (93e-01) (7.8e-31) (1.5e01)

wio ARMA >w/ ARMA  2.7e-01 2.0e-01 1.6e-04 8.1e-02 2.0e-01 5.8e-02
(0.0e+00) (0.0e+00)" (7.4e-01) (1.9e-266) (0.0e+00) (8.6e-158)

MNLS w/o ARMA = GNLSw/ ARMA £ 3i6e-07 2 1e-01 3.3e-02 6.7e-02 2.0e-01 5.6e-02
{ 0.0e+00)"(0.0e+00) (1.4e-01) (1.8e-65) (0.0e+00) (1.2e-90)

Table 2: Table of one-sided paired t-test results for SSR, MAPE, and CRagj calculated over all
decline models and at all viable well records, for 36 months of training data. In each cell, the
number on top is the estimate of the mean of differences and the number in parenthesis is the
p-value. Positive mean values are in bold and statistically significant values (p-value < 0.05)
are italicized.

ilarly, when assessing the GNLS with ARMA improvements, the gains in MAPE
are small in comparison to just using ARMA alone (with the Exponential as an
exception).

Again, the coverage rates improve with an even larger training data size (60
months). The Exponential, Hyperbolic, and Logistic Growth models remain the
most improved when coupled with the ARMA model and also when fit with
GNLS and coupled with the ARMA model. These improvements are all around
0.3, with the highest being 0.46 for the Exponential model under the “GNLS w/
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Decline Models

Alternative Exp Hyp Pow str Log Duo

S5R

NLS > GNLS  -5.4e+09 -6.2e+06  2.6e+08  4.6e+06 1.8e+11 -2.1e+09
(9.3e-01) (7.2e-01) (3.1e-02) (1.1e-01) [(25e-09) (8.3e-01)

wio ARMA>w/ ARMA  5.7e+09 2.3e+09  3.7e+09  2.6e+09 4.8e+11 22e+09
(5.2e-41) [(7.8e-38) (7.5e-20) (1.9e-34) [(2.2e-22) (1be-15)

NLS wfo ARMA > GNLS w/ ARMA  5.9e+09 2.1e+09  3.1e+09  2.5e+09 1.9e+41 1.8e+09
(6.2e-36) (4.6e-40) (4.5e-17) (2.5e-31) [(1.6e-09)) “(3.Be-18)

MAPE

NLS > GNLS  6.9e+00 3.0e-01 -4.2e-01 4.88-02 7.8e-01 8.2e-02
(8.8e-02) [(25e-02) (9.7e-01) (44e-03) £(9.7e:09) (4.7e-01)

w/o ARMA > w/ ARMA  3.4e+00 7.6e+00 1.7e+00 2.1e+00 9.88+00 2.1e+01
(1.7e-01) [26e-02) (1.2e-02) \(7.9e03) [(27e-02) (2.0e-02)

NLS w/o ARMA > GNLS w/ ARMA  7.1e+00 3. 1e+00 9.5e-01 Z1e+00 3.1e+00 5.4e+00
(9.2e-02) (9.3e-03) (1.3e-0M) [1.3e02) (1.4e-03) (5.6e-04)

CR_adj

NLS > GNLS  2.5e-01 5.1e-02 2.8e-04 2.9e-04 3.9e-02 1.6e-02
(2.7e-314) (7.4e°100) 4 4.7e-01) (4.8e-01) (27e-50) (1.2e-06)

wio ARMA > w/ ARMA™ ffe-01 3.2e-01 7.8e-04 1.2e-01 3.0e-01 1.2e-01
(0e+00) (0.0e+00) (7.5e-02) (1.1e-195) (0.0e+00) (7.6e-178)

NLS wfo ARMA > GNLS W/ ARMA £ Si7e-01 3.4e-01 8.0e-04 9.1e-02 3.0e-01 1.1e-01
{ 0.0e+00)"(0.0e+00) (4.1e-01) (8.2e-50) (0.0e+00) (8.1e-99)

Table 3: Table of one-sided paired t-test results for SSR, MAPE, and CRaqj calculated over all
decline models and at all viable well records, for 60 months of training data. In each cell, the
number on top is the estimate of the mean of differences and the number in parenthesis is the
p-value. Positive mean values are in bold and statistically significant values (p-value < 0.05)
are italicized.

ARMA?” case.

4.4. Estimated Ultimate Recovery

One main purpose of DCA is to get Estimated Ultimate Recovery (EUR)
values. EUR gives the overall gross worth of a producing well, and uncertainty in
this value should always be reported along with the estimate. This uncertainty
gives financial institutions and regulators a sense of the economic risk associated
with continued operation of the well. Traditionally, one would integrate the
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fitted decline curve (fit to all available data at a well) over a large time span,
say 20 or more years, to obtain a P50 EUR estimate. Here, in order to test
the ability of the prediction intervals in capturing EUR, a limited amount of
initial data at each well is used to estimate EUR and the uncertainty in that
estimate (prediction intervals, or P90 and P10 EUR values), while the remaining
field data is used to calculate the actual observed EUR. Wells with only 10 years
or more of data are used in this analysis, as the idea is to have some: long-
term measurements of EUR from the field upon which to evaluate the aceuracy
of the uncertainty quantification afforded by using ARMA-modeled.residuals as
compared to finding prediction intervals without the ARMA-modeling. 10 years
was chosen as the lower threshold for well data duration because/itiis a sufficiently
long time period and retains more wells in the dataset for testing (only one well
had more than 20 years of data, while 220 wells have at least 10 years). It
has already been demonstrated that the use of GNLS makes little difference,
so that fitting procedure is not analyzed here. Also, the previous figures and
tables show that the major improvements of using ARMA-modeled residuals lie
in the coverage rate (i.e., the prediction intervals or uncertainty quantification),
so the comparative MAPE of EUR estimates is not addressed here (fitting with
or without ARMA-modeling performs about the same in this regard).

Specifically, the predicted EUR (P50). is found by fitting a decline curve to
either the initial 24, 36, or 60 moenths of data at a well, and then integrating
that fitted curve over the timespan from the end of the training data period to
the last data point collected at the well and adding this integral to the sum of
training data. Similarly, the uncertainty (P90 and P10 EUR values) is estimated
by integrating the associated prediction intervals (Pl .2; Eq. over the same
time frame and also adding these integrals to the cumulative training data. Our
observed EUR values are taken as the cumulative of all available production
data at each well with at least 10 years of production data. Figure [7] shows the
proportion_of 220 measured EUR values (from wells with more than 10 years of
data) that fall within the P90-P10 bounds for different lengths of training data
(24, 36, and 60 months) and the six different decline curve models examined in
this paper.

The main result to be taken from Fig. [7]is that using ARMA-modeled residu-
als gives prediction intervals that always perform at least as well (and more often
than not out-perform) as using prediction intervals without ARMA-modeling.
That is, the white bars in Fig. are usually higher than the grey bars, and
seldom of equal height. This latter condition only occurs for all the Pow cases,
which has already shown poor prediction interval performance (Fig. @, and for
the Str model with 24 months of training data.

Furthermore, the degree to which the estimates with ARMA-modeling out-
perform those without tends to increase with the amount of training data (the
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Figure 7: Barplots comparing the proportion of wells whose EUR values fall within the predic-
tion intervals from fits using ARMA (white bars) versus fits without ARMA-modeled residuals
(grey bars). This comparison is carried out for all six decline curve models examined in this
paper, and for 24, 36, and 60 months of training data used for fitting the curves and estimating
the prediction intervals. Numbers on top of-each bar give the quantity of wells whose EUR fall
within the prediction interval.

difference in height of the paired bars tends to grow with more months of data
used for fitting). Including more data in the fitting process allows for a better
characterization of the autocorrelation.in the residuals, which leads to greater ac-
curacy in estimating the prediction intervals (more specifically, in estimating the
variance from the residuals, Var(é;)). Note that at whichever wells the ARMA-
modeling out-performs the regular methodology, the inclusion of the variance
from the residuals is generating wider prediction intervals (larger difference be-
tween P90 and P10 EUR values).

To frame this in more practical terms, using ARMA-modeled residuals in DCA
tends to give more accurate and more conservative estimation of the uncertainty
about. EUR at a well, with no possibility of doing worse than normal decline
curve fitting. Because EUR is an important metric used by financial institutions
and regulators to value oil and gas assets, the proposed method of using ARMA-
modeling can help greatly in risk management and give a more accurate portrayal
of financial liability to investors.
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5. Conclusion

The main conclusion to be drawn from the analysis in this paper is that
fitting an ARMA model to the residuals of a decline curve provides a rational
and more accurate quantification of the uncertainty in production forecasts and
estimates of ultimate recovery. The improved coverage rate of the prediction in-
tervals and increased proportion of EUR values contained within P90 and P10
values illustrate the value of including the ARMA-predicted residual variance in
the standard error term for the prediction intervals. This same treatment of in-
cluding ARMA-modeled residuals consistently improves the forecasting accuracy
(MAPE) of Duong’s model to a statistically significant degree. The goodness-
of-fit of the decline curve to historical data increases greatly when using the
ARMA-modeled residuals, but this feature has little practical significance. Fur-
thermore, estimating decline curve parameters via generalized (nonlinear) least
squares as opposed to ordinary or nonlinear least squares<does not appear to
drive any of these improvements. A tangential conclusion made from the anal-
ysis in this paper is that Duong’s model is generally fit better using nonlinear
least squares than using the prescribed step-wise ordinary least squares procedure
from Duong (2011).

Furthermore, in order to achieve a high level of statistical power, this study
uses a BIG dataset of the entire population of Marcellus shale wells. Conse-
quently, the fitting procedures in/this paper-were carried out in an automated
fashion, where the algorithms used for the nonlinear least squares and generalized
nonlinear least squares regressions are somewhat sensitive to the chosen starting
values, convergence tolerances, and number of maximum iterations. While great
effort was made in this analysis to find good heuristics for the starting values of
each decline curve model, these could be suboptimal for some wells. Similarly, the
global values used for convergence tolerance and maximum number of iterations
may not have been appropriate for all wells. It is possible that different results
may be achieved, and conclusions drawn, if one were to manually tailor these
settings to each individual well. Nevertheless, the algorithms worked sufficiently
for the majority of cases and I believe the conclusions are robust to the cases
where they may have performed sub-optimally.

In terms of future work, more advanced time series modeling of the residu-
als (e.g., ARIMA modeling, GARCH modeling) may offer improvements beyond
what is witnessed with the ARMA modeling in this study. Beyond a purely
production data-driven modeling approach, it is worth exploring the possible
dependency of autocorrelation in decline curve residuals on other exogenous vari-
ables, such as those related to the operation of the well. This may lead to more
powerful forecasting models that including such information as explanatory vari-
ables, instead of simply modeling the residuals as a time series, as is done in

this study. It may also suggest causal mechanisms for the (sometimes severe)
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autocorrelation seen in many of the Marcellus wells in this analysis.
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